##plugins.themes.bootstrap3.article.main##

Raúl Quintanar Casillas.

Resumen

Dentro del campo del aprendizaje adaptativo, algunas propuestas han optado por el
uso de sistemas de inferencia difusos como método para obtener la cantidad y tipo de recursos
u objetos de aprendizaje necesarios para un mejor desempeño del estudiante. Sin embargo,
estas propuestas no establecen un método para la integración de secuencias didácticas a partir
de estos recursos de aprendizaje. Esta investigación tuvo como objetivo presentar un
algoritmo para la producción de secuencias didácticas adaptativas con base en los valores
generados por los sistemas de inferencia difusos empleados en sistemas de aprendizaje
adaptativo. La metodología que se utilizó fue el desarrollo en cascada, que permitió generar
el algoritmo de Agotamiento Secuencial, Priorizado, Intercalado y Recursivo para la
Asignación de Objetos de Aprendizaje (ASPIRADO). Con el fin de realizar pruebas, este
algoritmo se tradujo al lenguaje de programación Python en donde se generaron tres
secuencias didácticas a partir de diferentes valores difusos correspondientes a cuatro tipos de
objetos de aprendizaje (texto, audio, video e infografía). Como resultado, se observó que las
secuencias didácticas se generaron con bajos tiempo de ejecución y con un uso bajo de
recursos de procesamiento y memoria. Se concluyó mencionando que el algoritmo tiene
como características ser efectivo, modular, flexible, adaptable y entendible; de igual forma,
se expusieron los beneficios y posibles aplicaciones del algoritmo en futuras investigaciones

Download Statistics

##plugins.themes.bootstrap3.article.details##

Keywords

Algoritmo, Secuencia, Didáctica, Aprendizaje, Adaptativo

References
Afini N., Shuib L., Md Nasir H.N., Bimba A., Idris N. & Balakrishnan V. (2018).
Identification of personal traits in adaptive learning environment: Systematic
literature review, Computers & Education. 130. 168-190
https://doi.org/10.1016/j.compedu.2018.11.005
Almohammadi, K, Hagras, H., Yao, Bo., Alzahrani, A., Alghazzawi, D. y Aldabbagh, G.
(2015). A type-2 fuzzy logic recommendation system for adaptive teaching. Soft
Computing, 21(4), 965–979. https://doi.org/10.1007/s00500-015-1826-y
Balasubramanian, V. y Margret, S. (2018). Learning style detection based on cognitive skills
to support adaptive learning environment – A reinforcement approach. Ain Shams
Engineering Journal, 9, 895-907. https://doi.org/10.1016/j.asej.2016.04.012
Bradac y Walek (2017). A comprehensive adaptive system for e-learning of foreign
languages. Expert Systems with Applications. 90, 414-426.
https://doi.org/10.1016/j.eswa.2017.08.019
Collazo, Y., Paez, M. y Fernández, J. (2021). Los objetos de aprendizaje: una revisión
bibliográfica con enfoque bibliométrico. (2021). Ciencias de la Información. 52(1).
3-10. https://bit.ly/rev_bib_OA
Ennouamani, S. y Mahani, Z. (2019). Towards adaptive learning systems based on fuzzylogic. Intelligent Computing-Proceedings of the Computing Conference. 625-640.
https://doi.org/10.1007/978-3-030-22871-2_42
Guevara, C. y Aguilar, J. (2019). Modelo Ontológico del Estándar LOM Extendido para la
Gestión de Objetos de Aprendizaje Adaptativos. Avances y retos de la ciencia e
ingeniería. 315-324. https://bit.ly/3TQyR2R
Hernandez-Cardenas, L., Castano, L., Cruz-Guzman, C. y Nigenda-Alvarez, J. (2021).
Personalised learning model for academic leveling and improvement in higher
education. Australasian Journal of Educational Technology, 38(2), 70-82.
https://bit.ly/3QxTE8v
Hussain, S., Kim, Y., Thakur, S. y Breslin, J. (2022). Optimization of Waiting Time for
Electric Vehicles Using a Fuzzy Inference System. IEEE Transactions on Intelligent
Transportation Systems. 1-12. https://doi.org/10.1109/TITS.2022.3140461
Karoui, A., Alvarez, L., Goffre, T., Dherbey-Chapuis, N., Rodi, M. y Ramalho, M. (2021),
Pathways within the European Platform for Personalized Language Learning PEAPL.
Proceedings of the 29th ACM Conference on User Modeling, Adaptation and
Personalization. 90–94. https://doi.org/10.1145/3450614.3464480
López, A., González, A y Guerra, C. (2021). Desarrollo e implementación de un sistema de
inferencia difuso en un juego serio que ayude a fortalecer el razonamiento lógicomatemático. Ingenierías, 24(90), https://bit.ly/FIS_raz_log_mat
Marzal, M y Parra, P. (2021). La educación competencial desde Visual Literacy y Gaming
para la innovación educativa: propuesta para un diseño instruccional de curso.
Ibersid. 15(1), 75-83, https://bit.ly/edu_comp
Megahed, M., y Mohammed, A. (2020). Modeling Adaptive E-Learning Environment using
Facial Expressions and Fuzzy Logic. Expert Systems with Applications, 113460.
https://doi.org/10.1016/j.eswa.2020.113460
Ministerio de Educación de España. (2009). Anexo I objeto digital educativo (ODE)
definición, arquitectura, niveles de agregación y tipología. Madrid: Gobierno de
España. https://bit.ly/3qp09jl
Mohamed, F., Abdeslam, J., Lahcen, E.B. (2017). Personalization of learning activities
within a virtual environment for training based on fuzzy logic theory. Mathematics in
Natural Science. 3 (2018), 12–17 https://doi.org/10.22436/mns.03.01.02
Nafea, S., Siewe, F. y He, Y. (2018). ULEARN: Personalized Course Learning Objects Based
on Hybrid Recommendation Approach. International Journal of Information and
Education Technology, 8(12), 842-847. https://doi.org/
10.18178/ijiet.2018.8.12.1151
Núñez-Márquez, I., Rodríguez, L., Salazar, G., Castro, L., et al. (2015). A Framework for
Automatic Identification of Learning Styles in Learning Management Systems.
Research in Computing Science 106 (2015). pp. 59–68; rec. 2015-09-04; acc. 2015-
10-02. https://bit.ly/3L0gwfE
Pascual, S. (2021). Recursos Educativos Abiertos en las bibliotecas universitarias españolas:
el caso del TFG. Facultad de Filosofía y Letras de la Universidad de Zaragoza.
https://bit.ly/rec_edu_a
Quintanar, R. y Hernández, S. (2022). Modelos Tecnológicos De Aprendizaje Adaptativo
Aplicados a La Educación. Revista Tecnológica-Educativa Docentes 2.0 15 (1). 41-
66. https://doi.org/10.37843/rted.v15i1.308.
Xie, H., Chu, H., Hwang, G. & Wang, Ch. (2019). Trends and development in technologyenhanced adaptive/ personalized learning: A systematic review of journal
publications from 2007 to 2017. Computers and Education. 140 (2019).
https://doi.org/10.1016/j.compedu.2019.103599
Zhao, Q., Lai, Sh., Wang, J. y Wang, L. (2021). Hybrid Fuzzy Rule-Based Classification
System for Moodle LMS System, Journal of Internet Technology, 22(1), 81-90.
https://doi.org/10.3966/160792642021012201008
Citation Format
Cómo citar
Quintanar Casillas. , R. (2023). II. ASPIRADO: PROPUESTA DE ALGORITMO PARA LA INTEGRACIÓN DE SECUENCIAS DIDÁCTICAS ADAPTATIVAS . Revista Diálogos Interdisciplinarios En Red - REDIIR, 10(10), 22. https://doi.org/10.34893/rediir.v10i10.427
Sección
Artículos Científicos