II. ASPIREXS-LO: A PROPOSAL OF ALGORITHM FOR THE INTEGRATION OF ADAPTIVE DIDACTIC SEQUENCES
##plugins.themes.bootstrap3.article.main##
Abstract
Within the field of adaptive learning, some proposals have opted for the
use of fuzzy inference systems as a method to obtain the amount and type of resources
or learning objects necessary for better student performance. However,
These proposals do not establish a method for the integration of didactic sequences from
of these learning resources. This research aimed to present a
algorithm for the production of adaptive didactic sequences based on the values
generated by fuzzy inference systems used in learning systems
adaptive. The methodology used was cascade development, which allowed generating
the Sequential, Prioritized, Interleaved and Recursive Depletion algorithm for the
Assignment of Learning Objects (ASPIRED). For testing purposes, this
algorithm was translated into the Python programming language where three
didactic sequences from different fuzzy values corresponding to four types of
learning objects (text, audio, video and infographics). As a result, it was observed that the
didactic sequences were generated with low execution times and with a low use of
processing resources and memory. It was concluded by mentioning that the algorithm has
as characteristics to be effective, modular, flexible, adaptable and understandable; Similarly,
the benefits and possible applications of the algorithm in future research were exposed
Download Statistics
##plugins.themes.bootstrap3.article.details##
Algorithm, Sequence, Didactics, Learning, Adaptive
Identification of personal traits in adaptive learning environment: Systematic
literature review, Computers & Education. 130. 168-190
https://doi.org/10.1016/j.compedu.2018.11.005
Almohammadi, K, Hagras, H., Yao, Bo., Alzahrani, A., Alghazzawi, D. y Aldabbagh, G.
(2015). A type-2 fuzzy logic recommendation system for adaptive teaching. Soft
Computing, 21(4), 965–979. https://doi.org/10.1007/s00500-015-1826-y
Balasubramanian, V. y Margret, S. (2018). Learning style detection based on cognitive skills
to support adaptive learning environment – A reinforcement approach. Ain Shams
Engineering Journal, 9, 895-907. https://doi.org/10.1016/j.asej.2016.04.012
Bradac y Walek (2017). A comprehensive adaptive system for e-learning of foreign
languages. Expert Systems with Applications. 90, 414-426.
https://doi.org/10.1016/j.eswa.2017.08.019
Collazo, Y., Paez, M. y Fernández, J. (2021). Los objetos de aprendizaje: una revisión
bibliográfica con enfoque bibliométrico. (2021). Ciencias de la Información. 52(1).
3-10. https://bit.ly/rev_bib_OA
Ennouamani, S. y Mahani, Z. (2019). Towards adaptive learning systems based on fuzzylogic. Intelligent Computing-Proceedings of the Computing Conference. 625-640.
https://doi.org/10.1007/978-3-030-22871-2_42
Guevara, C. y Aguilar, J. (2019). Modelo Ontológico del Estándar LOM Extendido para la
Gestión de Objetos de Aprendizaje Adaptativos. Avances y retos de la ciencia e
ingeniería. 315-324. https://bit.ly/3TQyR2R
Hernandez-Cardenas, L., Castano, L., Cruz-Guzman, C. y Nigenda-Alvarez, J. (2021).
Personalised learning model for academic leveling and improvement in higher
education. Australasian Journal of Educational Technology, 38(2), 70-82.
https://bit.ly/3QxTE8v
Hussain, S., Kim, Y., Thakur, S. y Breslin, J. (2022). Optimization of Waiting Time for
Electric Vehicles Using a Fuzzy Inference System. IEEE Transactions on Intelligent
Transportation Systems. 1-12. https://doi.org/10.1109/TITS.2022.3140461
Karoui, A., Alvarez, L., Goffre, T., Dherbey-Chapuis, N., Rodi, M. y Ramalho, M. (2021),
Pathways within the European Platform for Personalized Language Learning PEAPL.
Proceedings of the 29th ACM Conference on User Modeling, Adaptation and
Personalization. 90–94. https://doi.org/10.1145/3450614.3464480
López, A., González, A y Guerra, C. (2021). Desarrollo e implementación de un sistema de
inferencia difuso en un juego serio que ayude a fortalecer el razonamiento lógicomatemático. Ingenierías, 24(90), https://bit.ly/FIS_raz_log_mat
Marzal, M y Parra, P. (2021). La educación competencial desde Visual Literacy y Gaming
para la innovación educativa: propuesta para un diseño instruccional de curso.
Ibersid. 15(1), 75-83, https://bit.ly/edu_comp
Megahed, M., y Mohammed, A. (2020). Modeling Adaptive E-Learning Environment using
Facial Expressions and Fuzzy Logic. Expert Systems with Applications, 113460.
https://doi.org/10.1016/j.eswa.2020.113460
Ministerio de Educación de España. (2009). Anexo I objeto digital educativo (ODE)
definición, arquitectura, niveles de agregación y tipología. Madrid: Gobierno de
España. https://bit.ly/3qp09jl
Mohamed, F., Abdeslam, J., Lahcen, E.B. (2017). Personalization of learning activities
within a virtual environment for training based on fuzzy logic theory. Mathematics in
Natural Science. 3 (2018), 12–17 https://doi.org/10.22436/mns.03.01.02
Nafea, S., Siewe, F. y He, Y. (2018). ULEARN: Personalized Course Learning Objects Based
on Hybrid Recommendation Approach. International Journal of Information and
Education Technology, 8(12), 842-847. https://doi.org/
10.18178/ijiet.2018.8.12.1151
Núñez-Márquez, I., Rodríguez, L., Salazar, G., Castro, L., et al. (2015). A Framework for
Automatic Identification of Learning Styles in Learning Management Systems.
Research in Computing Science 106 (2015). pp. 59–68; rec. 2015-09-04; acc. 2015-
10-02. https://bit.ly/3L0gwfE
Pascual, S. (2021). Recursos Educativos Abiertos en las bibliotecas universitarias españolas:
el caso del TFG. Facultad de Filosofía y Letras de la Universidad de Zaragoza.
https://bit.ly/rec_edu_a
Quintanar, R. y Hernández, S. (2022). Modelos Tecnológicos De Aprendizaje Adaptativo
Aplicados a La Educación. Revista Tecnológica-Educativa Docentes 2.0 15 (1). 41-
66. https://doi.org/10.37843/rted.v15i1.308.
Xie, H., Chu, H., Hwang, G. & Wang, Ch. (2019). Trends and development in technologyenhanced adaptive/ personalized learning: A systematic review of journal
publications from 2007 to 2017. Computers and Education. 140 (2019).
https://doi.org/10.1016/j.compedu.2019.103599
Zhao, Q., Lai, Sh., Wang, J. y Wang, L. (2021). Hybrid Fuzzy Rule-Based Classification
System for Moodle LMS System, Journal of Internet Technology, 22(1), 81-90.
https://doi.org/10.3966/160792642021012201008